#]. In this paper we give a new
generalization of SNS-matrices and investigate some of
their basic properties.
Let #math14#S = [sij] be a (0, 1, - 1)-matrix of order n and
let #math15#C = [cij] be a real matrix of order n. The pair
(S, C) is called a <#46#>matrix pair of order<#46#> n.
Throughout, #math16#X = [xij] denotes a matrix of order n
whose entries are algebraically independent indeterminates
over the real field. Let SoX denote the Hadamard
product (entrywise product) of S and X. We say that the
pair (S, C) is a <#48#>sign-nonsingular matrix pair of
order<#48#> n, abbreviated SNS-<#49#>matrix pair of order<#49#> n,
provided that the matrix
#math17#
A = SoX + C
is nonsingular
for all positive real values of the xij. If C = O
then the pair (S, O) is a SNS-matrix pair if and only if
S is a SNS-matrix. If S = O then the pair (O, C) is a
SNS-matrix pair if and only if C is nonsingular. Thus
SNS-matrix pairs include both nonsingular matrices and
sign-nonsingular matrices as special cases.
The pairs (S, C) with
#math18#
S = #tex2html_wrap_indisplay1208##tex2html_wrap_indisplay1209##tex2html_wrap_indisplay1210#,;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;C = #tex2html_wrap_indisplay1211##tex2html_wrap_indisplay1212##tex2html_wrap_indisplay1213#
and
#math19#
S = #tex2html_wrap_indisplay1215##tex2html_wrap_indisplay1216##tex2html_wrap_indisplay1217#,;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;;SPMnbsp;C = #tex2html_wrap_indisplay1218##tex2html_wrap_indisplay1219##tex2html_wrap_indisplay1220#
are examples of SNS-matrix pairs.